
Adaptive Mapping of Linear DSP Algorithms to
Fixed-Point Arithmetic∗

Lawrence J. Chang† Yevgen Voronenko† Markus Püschel†

Introduction
Embedded DSP (digital signal processing) applications are typically implemented using fixed point arith-
metic; in hardware to reduce area requirements and increase throughput, but also in software since most
embedded processors do not provide floating point arithmetic. Consequently, the developer is confronted
with the difficult task of deciding on the fixed point format, i.e., the number of integer and fractional bits
to avoid overflow and ensure sufficient accuracy. For software implementations, the entire bitwidth is fixed,
typically at 32, which means that increasing the representable range (number of integer bits) reduces the
available accuracy (number of fractional bits) and vice-versa.

In this paper we present a compiler that translates a floating point C implementation of a linear DSP
kernel, such as a discrete Fourier or wavelet transform, into a high accuracy fixed point C implementation.
The inputs to the compiler are a floating point arithmetic C program and the range of the input vector
elements. First, the compiler statically analyzes the program in a single pass using a recently developed tool
that uses affine arithmetic modeling [1]. Then, in the global mode, the compiler determines the global fixed
point format with the least number of integer bits (and thus the highest accuracy) that guarantees to avoid
overflow and outputs the corresponding code. More interesting is the local mode, in which the compiler
determines the best format independently for each variable, thus further pushing the possible accuracy. The
compiler is currently limited to straightline code; an extension to loop code is in development.

Further, we used the SPIRAL code generator [2] to generate numerically robust implementations as
input to our compiler, thus automating the entire design flow of creating high accuracy fixed point imple-
mentations for linear DSP kernels. Experiments with different transforms show that by choosing the formats
independently (local mode) the accuracy can be improved by a factor of up to 5 in terms of a norm-based
error measure.

Adaptive Fixed-Point Mapping for High Accuracy
Our approach to generating a high accuracy fixed point implementation for a DSP transform T consists of
the following two high-level steps; the second step is our main contribution.
• We generate a numerically robust initial floating point implementation for T using SPIRAL.
• We translate this implementation into a high accuracy fixed point implementation using the input range

as additional information.
Generating a Robust Initial Implementation. SPIRAL is a generator for fast, platform-adapted im-

plementations of DSP transforms and filters. SPIRAL operates in a feedback loop that generates, for a given
transform, alternative algorithms and implementations to find the best match to the given platform. The
feedback loop is driven by the measured runtimes of the generated codes; by replacing it with a norm-based
accuracy measure, we use SPIRAL to generate numerically robust code.

Adaptive Translation into Fixed Point Code. To translate a floating point implementation into fixed
point format, the crucial task is to determine the maximal range of each occurring variable. The tool in [1]
uses affine arithmetic modeling to achieve this statically with a single pass through the code. The basic idea
is to represent each variable x by an affine expression

x̂ = x +
∑

xiεi, xi > 0,

∗This work was supported by NSF through awards ACR-0234293, SYS-0310941, and ITR/NGS-0325687.
†Dept. of Electrical and Computer Engineering, Carnegie Mellon University, {lchang,yvoronen,pueschel}@ece.cmu.edu .

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Adaptive Mapping of Linear DSP Algorithms to Fixed-Point Arithmetic

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Dept. of Electrical and Computer Engineering,Carnegie Mellon
University

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

2000

2500

3000

3500
nu

m
be

r
of

 a
lg

or
ith

m
s

accuracy when cut to 8 bits
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

log
2
(input range)

lo
ca

l m
od

e
ac

cu
ra

cy
/g

lo
ba

l m
od

e
ac

cu
ra

cy

DCT2
32

DCT4
32

DFT
23

DFT
64

RDFT
64

ref. line

global mode reference line

Figure 1: Left: accuracy histogram of 10,000 SPIRAL generated algorithms for a DCT, type 2, size 32. Right: relative accuracy of
“local method” vs. ”global method” (lower is better).

where the εi are random variables uniformly distributed in [−1, 1]. Intuitively, some of the εi’s capture the
range of each variable and others the uncertainty due to finite precision effects in the computation. Starting
from the input, these affine expressions are computed for every variable in the code; each finite precision
operation introduces a new error variable. For example, a global input range of [−N, N] corresponds to
affine expressions of the form 0 + Nε1, i.e., at the input the entire uncertainty is due to range. For further
details on the method see [1].

From the affine expression for a variable, its maximal range is obtained by setting all εi to 1 and -1.
In the global mode, we determine the number of integer bits through the largest occurring range among all
variables. In the local mode, the format of each variable is chosen independently.

Results
Figure 1 (left) shows a robustness histogram of 10,000 SPIRAL generated algorithms for a DCT (type
2) of size 32. The robustness measure compares a floating point implementation to an 8-bit fixed-point
implementation for each algorithm.1 Most algorithms are within a factor of 2–3. Using SPIRAL’s search
mechanism we generate a robust algorithm as input to our compiler.

Figure 1 (right) shows the benefit of choosing independent fixed point formats (local mode) versus
choosing a global format. Each line represents a transform; the x-axis shows the logarithm of the chosen
input range (e.g., 10 means a range of [−210, 210]); the y-axis shows the relative accuracy of local vs. global.
The best improvement of a factor of 3–5 is achieved for a real DFT (RDFT).

Conclusion. Our compiler achieves two main goals in the targeted domain. First, we free the developer
from choosing a suitable fixed-point format by hand. Second, we obliterate the need for extensive simula-
tions, since the generated code provably avoids overflow by construction. By using our compiler as backend
to SPIRAL, the design flow is fully automated.

References
[1] Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen. Fast, Accurate Static Analysis for Fixed-Point Finite Precision

Effects in DSP Designs. In Proc. ICCAD, 2003.

[2] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, and R. W. Johnson. SPIRAL:
A Generator for Platform-Adapted Libraries of Signal Processing Algorithms. International Journal of High
Performance Computing Applications, 18(1):21–45, 2004. http://www.spiral.net.

1More precisely, we apply both implementations to all standard base vectors to create the (almost) exact transform matrix M

and the approximation M̃ and measure the matrix infinity norm ||M − M̃ ||∞ of the difference.

C
ar

ne
gi

e
M

el
lo

n

Adaptive Mapping of Linear DSP Adaptive Mapping of Linear DSP
Algorithms to FixedAlgorithms to Fixed--Point ArithmeticPoint Arithmetic

Lawrence J. Chang
Inpyo Hong

Yevgen Voronenko
Markus Püschel

Department of Electrical & Computer Engineering
Carnegie Mellon University

Supported by NSF awards
ACR-0234293, SYS-0310941, and ITR/NGS-0325687

C
ar

ne
gi

e
M

el
lo

n
MotivationMotivation

Embedded DSP applications (SW and HW) typically use fixed-
point arithmetic for reduced power/area and better throughput

Typically DSP algorithms are manually mapped to fixed-point
implementation

time consuming, non-trivial task
difficult trade-off between range (to avoid overflow) and
precision
usually done using simulations (not an exact science)

Our goal: automatically generate overflow-proof, and accurate
fixed-point code (SW) for linear DSP kernels using the SPIRAL
code generator

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Background: SPIRALBackground: SPIRAL

Generates fast, platform-adapted code for linear DSP
transforms (DFT, DCTs, DSTs, filters, DWT, …)
Adapts by searching in the algorithm space and
implementation space for the best match to the platform
Floating-point code only
Our goal: extend SPIRAL to generate overflow-proof,
accurate fixed-point code

DSP transform

Formula Generator

Formula Compiler
Se

ar
ch

 E
ng

in
e

S
P

I R
 A

 L

Performance Eval.

runtime

adapted
implementation

www.spiral.net

C
ar

ne
gi

e
M

el
lo

n
Background: Transform AlgorithmsBackground: Transform Algorithms

Reduce computation cost from O(n2) to O(n log n) or below
For every transform there are many algorithms
An algorithm can be represented as

Sparse matrix factorization

Data flow DAG (Directed Acyclic Graph) Program
t1 = a * x2

t2 = t1 + x0

t3 = -s * x1 + c * x3

y3 = t2 + t3

y0 = t2 – t3

… …

… …

Multiplication by constant s

addition

C
ar

ne
gi

e
M

el
lo

n
Background: FixedBackground: Fixed--Point ArithmeticPoint Arithmetic

Uses integers to represent fractional numbers:

Operations

Dynamic range:
-2IB ... 2IB-1
much smaller than in floating-point) risk of overflow

Problem: for a given application, choose IB (and thus FB) to avoid
overflow

We present an algorithm to automatically choose, application
dependent, “best” IB (and thus FB) for linear DSP kernels

integer bits fractional bitssign

register width: RW = 1 + IB + FB (typically 16 or 32)

IB FB

a+b

addition multiplication

Example (RW=9, IB=FB=4)
0011 00112 = 1011.01112 = 3.187510

a·b » fb

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Overview of ApproachOverview of Approach

Extension of SPIRAL code generator
Fixed-point mapping: maps floating-point code into fixed-point
code, given the input range
Use SPIRAL to automatically search for the fixed-point
implementation

with highest accuracy, or
with fastest runtime DSP transform

Formula Generator

Formula Compiler

Se
ar

ch
 E

ng
in

e
Fixed-Point Mapping

Performance Ev
runtime accuracy

input
range

adapted
implementation

C
ar

ne
gi

e
M

el
lo

n
Tool: Affine ArithmeticTool: Affine Arithmetic

Basic idea: propagate ranges through the computation
(interval arithmetic, IA); each variable becomes an interval
Problem: leads to range overestimation, since correlations
between variables are not considered
Solution: affine arithmetic (AA) [1]

represents range as affine expression
captures correlations

IA: A(x) = [-M,M]
AA: A(x) = c0·E0 +c1·E1+…

Ei are ranges, e.g.,Ei=[-1,1]

[1] Fang Fang, Rob A. Rutenbar,
Markus Püschel, and Tsuhan Chen
Toward Efficient Static Analysis of Finite-
Precision Effects in DSP Applications via
Affine Arithmetic Modeling
Proc. DAC 2003, pp. 496-501

C
ar

ne
gi

e
M

el
lo

n
Algorithm 1 [Range Propagation]Algorithm 1 [Range Propagation]

Input: Program with additions and multiplications by
constants, ranges of inputs

Output: Ranges of outputs and intermediate results

Denote input ranges by xi with i2 [1, N]
We represent all variables v as affine expressions A:

Traverse all variables from input to output, and compute A:

where ci are constants

Variable ranges R=[Rmin,Rmax] are given by

C
ar

ne
gi

e
M

el
lo

n
ExampleExample

Affine Expressions
A(t1) = x1 + x2
A(t2) = x1 - x2

A(y1) = 1.2 x1 + 1.2 x2
A(y2) = -2.3 x1 + 2.3 x2
A(y3) = -1.1 x1 + 3.5 x2

Program
t1 = x1 + x2

t2 = x1 - x2

y1 = 1.2 * t1

y2 = -2.3 * t2

y3 = y1 + y2

Computed Ranges
R(t1) = [-2,2]
R(t2) = [-2,2]
R(y1) = [-2.4,2.4]
R(y2) = [-2.6,2.6]
R(y3) = [-4.6,4.6]

Given Ranges
R(x1) = [-1,1]
R(x2) = [-1,1]

ranges are exact (not worst cases)

C
ar

ne
gi

e
M

el
lo

n
Algorithm 2 [Error Propagation]Algorithm 2 [Error Propagation]

Input: Program with additions and multiplications by
constants, ranges of inputs

Output: Error bounds on outputs and intermediate results

Denote by εi in [-1,1] independent random error variables
We augment affine expressions A with error terms:

Traverse all variables from input to output, and compute Aε:

where fi are error
magnitude constants

f

new error variable introduced

Maximum error is given by

C
ar

ne
gi

e
M

el
lo

n
FixedFixed--Point MappingPoint Mapping

Input:

floating point program (straightline code) for linear transform

ranges of input

Output: fixed-point program

Algorithm:

Determine the affine expressions of all intermediate and output
variables; compute their maximal ranges

Mode 1: Global format

the largest range determines the fixed point format globally

Mode 2: Local format

allow different formats for all intermediate and output
variables

Convert floating-point constants into fixed-point constants

Convert floating-point operations into fixed-point operations

Output fixed-point code

C
ar

ne
gi

e
M

el
lo

n
Accuracy MeasureAccuracy Measure

Goal: evaluate a SPIRAL generated fixed-point program for
accuracy to enable search for best = most accurate algorithm
Choose input independent accuracy measure: matrix norm

∞− ||ˆ|| TT max row sum norm

matrix for exact
(floating-point) program

matrix for
fixed-point program

Note: can be used to derive input dependent error bounds

∞∞∞ −≤− ||||||ˆ||||ˆ|| xTTyy

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
Probabilistic AnalysisProbabilistic Analysis

Fixed point mapping chooses range conservatively, namely:

L++= 1100)(xcxcxA

leads to a range estimate of

⎥
⎦

⎤
⎢
⎣

⎡ ∑∑
i

ii
i

ii xcxc |)max(|||,|)min(|||

However: not all values in [-M,M] are equally likely

Analysis:
Assume xi are uniformly distributed, independent random
variables
Use Central Limit Theorem: A(x) is approximately Gaussian
Extend Fixed-Point Mapping to include a probabilistic mode
(range satisfied with given probability p)

C
ar

ne
gi

e
M

el
lo

n
Overestimation due to Central Limit TheoremOverestimation due to Central Limit Theorem

affine
expression

with:

4 terms

16 terms

64 terms

assuming input/error variables are independent

C
ar

ne
gi

e
M

el
lo

n
OutlineOutline

Background
Approach using SPIRAL

Mapping to Fixed Point Code (Affine Arithmetic)
Accuracy Measure

Probabilistic Analysis
Results

C
ar

ne
gi

e
M

el
lo

n
DCT, size 32

10,000 random algorithms
Spiral generated

Accuracy Histogram Accuracy Histogram

Spread 10x, most within 2x
Need for search

C
ar

ne
gi

e
M

el
lo

n
Global vs. Local ModeGlobal vs. Local Mode

several
transforms

several
transforms

local mode a factor of 1.5-2 better

C
ar

ne
gi

e
M

el
lo

n
Local vs. Gaussian Local ModeLocal vs. Gaussian Local Mode

99.99%
confidence

for each
variable

gain: about a factor of 2.5-4

C
ar

ne
gi

e
M

el
lo

n
SummarySummary

An automatic method to generate accurate, overflow-proof fixed-
point code for linear DSP kernels

Using SPIRAL to find the most accurate algorithm: 2x
Floating-point to fixed-point using affine arithmetic analysis
(global, local: 2x, probabilistic: 4x)
16x

Current work:
Extend approach to handle loop code and thus arbitrary size transforms
Refine probabilistic mode to get statements as:

prob(overflow) < p

Further down the road:
Fixed-point mapping compiler for more general numerical DSP
kernels/applications

www.spiral.net

	Presentation:
	Abstract:
	Agenda:

